Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ArXiv ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38495560

RESUMO

We propose the Self Returning Excluded Volume (SR-EV) model for the structure of chromatin based on stochastic rules and physical interactions that can capture the observed behavior across imaging and sequencing based measures of chromatin organization. From nucleosome to chromosome scales, the model captures the overall chromatin organization as a corrugated system, with dense and dilute regions alternating in a manner that resembles the mixing of two disordered bi-continuous phases. This particular organizational topology is a consequence of the multiplicity of interactions and processes ocurring in the nuclei, and mimicked by the proposed return rules. Single configuration properties and ensemble averages show a robust agreement between theoretical and experimental results including chromatin volume concentration, contact probability, packing domain identification and size characterization, and packing scaling behavior. Model and experimental results suggest that there is an inherent chromatin organization regardless of the cell character and resistent to external forcings such as Rad21 degradation.

2.
Genome Biol ; 25(1): 77, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519987

RESUMO

BACKGROUND: B-type lamins are critical nuclear envelope proteins that interact with the three-dimensional genomic architecture. However, identifying the direct roles of B-lamins on dynamic genome organization has been challenging as their joint depletion severely impacts cell viability. To overcome this, we engineered mammalian cells to rapidly and completely degrade endogenous B-type lamins using Auxin-inducible degron technology. RESULTS: Using live-cell Dual Partial Wave Spectroscopic (Dual-PWS) microscopy, Stochastic Optical Reconstruction Microscopy (STORM), in situ Hi-C, CRISPR-Sirius, and fluorescence in situ hybridization (FISH), we demonstrate that lamin B1 and lamin B2 are critical structural components of the nuclear periphery that create a repressive compartment for peripheral-associated genes. Lamin B1 and lamin B2 depletion minimally alters higher-order chromatin folding but disrupts cell morphology, significantly increases chromatin mobility, redistributes both constitutive and facultative heterochromatin, and induces differential gene expression both within and near lamin-associated domain (LAD) boundaries. Critically, we demonstrate that chromatin territories expand as upregulated genes within LADs radially shift inwards. Our results indicate that the mechanism of action of B-type lamins comes from their role in constraining chromatin motion and spatial positioning of gene-specific loci, heterochromatin, and chromatin domains. CONCLUSIONS: Our findings suggest that, while B-type lamin degradation does not significantly change genome topology, it has major implications for three-dimensional chromatin conformation at the single-cell level both at the lamina-associated periphery and the non-LAD-associated nuclear interior with concomitant genome-wide transcriptional changes. This raises intriguing questions about the individual and overlapping roles of lamin B1 and lamin B2 in cellular function and disease.


Assuntos
Cromatina , Lamina Tipo B , Animais , Lamina Tipo B/genética , Heterocromatina , Hibridização in Situ Fluorescente , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Laminas , Expressão Gênica , Mamíferos/genética
4.
Res Sq ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37886531

RESUMO

We propose the Self Returning Excluded Volume (SR-EV) model for the structure of chromatin based on stochastic rules and physical interactions that is able to capture the observed behavior across imaging and sequencing based measures of chromatin organization. The SR-EV model takes the return rules of the Self Returning Random Walk, incorporates excluded volume interactions, chain connectivity and expands the length scales range from 10 nm to over 1 micron. The model is computationally fast and we created thousands of configurations that we grouped in twelve different ensembles according to the two main parameters of the model. The analysis of the configurations was done in a way completely analogous to the experimental treatments used to determine chromatin volume concentration, contact probability, packing domain identification and size characterization, and packing scaling behavior. We find a robust agreement between the theoretical and experimental results. The overall organization of the model chromatin is corrugated, with dense packing domains alternating with a very dilute regions in a manner that resembles the mixing of two disordered bi-continuous phases. The return rules combined with excluded volume interactions lead to the formation of packing domains. We observed a transition from a short scale regime to a long scale regime occurring at genomic separations of ~ 4 × 104 base pairs or ~ 100 nm in distance. The contact probability reflects this transition with a change in the scaling exponent from larger than -1 to approximately -1. The analysis of the pair correlation function reveals that chromatin organizes following a power law scaling with exponent D∈{2,3} in the transition region between the short and long distance regimes.

5.
ACS Cent Sci ; 9(6): 1200-1212, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37396862

RESUMO

Scanning transmission electron microscopy tomography with ChromEM staining (ChromSTEM), has allowed for the three-dimensional study of genome organization. By leveraging convolutional neural networks and molecular dynamics simulations, we have developed a denoising autoencoder (DAE) capable of postprocessing experimental ChromSTEM images to provide nucleosome-level resolution. Our DAE is trained on synthetic images generated from simulations of the chromatin fiber using the 1-cylinder per nucleosome (1CPN) model of chromatin. We find that our DAE is capable of removing noise commonly found in high-angle annular dark field (HAADF) STEM experiments and is able to learn structural features driven by the physics of chromatin folding. The DAE outperforms other well-known denoising algorithms without degradation of structural features and permits the resolution of α-tetrahedron tetranucleosome motifs that induce local chromatin compaction and mediate DNA accessibility. Notably, we find no evidence for the 30 nm fiber, which has been suggested to serve as the higher-order structure of the chromatin fiber. This approach provides high-resolution STEM images that allow for the resolution of single nucleosomes and organized domains within chromatin dense regions comprising of folding motifs that modulate the accessibility of DNA to external biological machinery.

6.
bioRxiv ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37425796

RESUMO

BACKGROUND: B-type lamins are critical nuclear envelope proteins that interact with the 3D genomic architecture. However, identifying the direct roles of B-lamins on dynamic genome organization has been challenging as their joint depletion severely impacts cell viability. To overcome this, we engineered mammalian cells to rapidly and completely degrade endogenous B-type lamins using Auxin-inducible degron (AID) technology. RESULTS: Paired with a suite of novel technologies, live-cell Dual Partial Wave Spectroscopic (Dual-PWS) microscopy, in situ Hi-C, and CRISPR-Sirius, we demonstrate that lamin B1 and lamin B2 depletion transforms chromatin mobility, heterochromatin positioning, gene expression, and loci-positioning with minimal disruption to mesoscale chromatin folding. Using the AID system, we show that the disruption of B-lamins alters gene expression both within and outside lamin associated domains, with distinct mechanistic patterns depending on their localization. Critically, we demonstrate that chromatin dynamics, positioning of constitutive and facultative heterochromatic markers, and chromosome positioning near the nuclear periphery are significantly altered, indicating that the mechanism of action of B-type lamins is derived from their role in maintaining chromatin dynamics and spatial positioning. CONCLUSIONS: Our findings suggest that the mechanistic role of B-type lamins is stabilization of heterochromatin and chromosomal positioning along the nuclear periphery. We conclude that degrading lamin B1 and lamin B2 has several functional consequences related to both structural disease and cancer.

7.
Nat Biomed Eng ; 7(11): 1514-1529, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37308586

RESUMO

Topographical cues on cells can, through contact guidance, alter cellular plasticity and accelerate the regeneration of cultured tissue. Here we show how changes in the nuclear and cellular morphologies of human mesenchymal stromal cells induced by micropillar patterns via contact guidance influence the conformation of the cells' chromatin and their osteogenic differentiation in vitro and in vivo. The micropillars impacted nuclear architecture, lamin A/C multimerization and 3D chromatin conformation, and the ensuing transcriptional reprogramming enhanced the cells' responsiveness to osteogenic differentiation factors and decreased their plasticity and off-target differentiation. In mice with critical-size cranial defects, implants with micropillar patterns inducing nuclear constriction altered the cells' chromatin conformation and enhanced bone regeneration without the need for exogenous signalling molecules. Our findings suggest that medical device topographies could be designed to facilitate bone regeneration via chromatin reprogramming.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Camundongos , Humanos , Animais , Cromatina , Constrição , Regeneração Óssea
9.
Sci Rep ; 12(1): 12198, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842472

RESUMO

Chromatin organization over multiple length scales plays a critical role in the regulation of transcription. Deciphering the interplay of these processes requires high-resolution, three-dimensional, quantitative imaging of chromatin structure in vitro. Herein, we introduce ChromSTEM, a method that utilizes high-angle annular dark-field imaging and tomography in scanning transmission electron microscopy combined with DNA-specific staining for electron microscopy. We utilized ChromSTEM for an in-depth quantification of 3D chromatin conformation with high spatial resolution and contrast, allowing for characterization of higher-order chromatin structure almost down to the level of the DNA base pair. Employing mass scaling analysis on ChromSTEM mass density tomograms, we observed that chromatin forms spatially well-defined higher-order domains, around 80 nm in radius. Within domains, chromatin exhibits a polymeric fractal-like behavior and a radially decreasing mass-density from the center to the periphery. Unlike other nanoimaging and analysis techniques, we demonstrate that our unique combination of this high-resolution imaging technique with polymer physics-based analysis enables us to (i) investigate the chromatin conformation within packing domains and (ii) quantify statistical descriptors of chromatin structure that are relevant to transcription. We observe that packing domains have heterogeneous morphological properties even within the same cell line, underlying the potential role of statistical chromatin packing in regulating gene expression within eukaryotic nuclei.


Assuntos
Cromatina , Cromossomos , Núcleo Celular , DNA , Microscopia Eletrônica de Transmissão e Varredura
10.
Microsc Microanal ; 27(4): 878-888, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34108070

RESUMO

A profound characteristic of field cancerization is alterations in chromatin packing. This study aimed to quantify these alterations using electron microscopy image analysis of buccal mucosa cells of laryngeal, esophageal, and lung cancer patients. Analysis was done on normal-appearing mucosa, believed to be within the cancerization field, and not tumor itself. Large-scale electron microscopy (nanotomy) images were acquired of cancer patients and controls. Within the nuclei, the chromatin packing of euchromatin and heterochromatin was characterized. Furthermore, the chromatin organization was quantified through chromatin packing density scaling. A significant difference was found between the cancer and control groups in the chromatin packing density scaling parameter for length scales below the optical diffraction limit (200 nm) in both the euchromatin (p = 0.002) and the heterochromatin (p = 0.006). The chromatin packing scaling analysis also indicated that the chromatin organization of cancer patients deviated significantly from the control group. They might allow for novel strategies for cancer risk stratification and diagnosis with high sensitivity. This could aid clinicians in personalizing screening strategies for high-risk patients and follow-up strategies for treated cancer patients.


Assuntos
Cromatina , Mucosa Bucal , Neoplasias Bucais , Eucromatina , Heterocromatina , Humanos , Microscopia Eletrônica , Mucosa Bucal/citologia , Neoplasias Bucais/diagnóstico
11.
Sci Adv ; 7(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523864

RESUMO

Extending across multiple length scales, dynamic chromatin structure is linked to transcription through the regulation of genome organization. However, no individual technique can fully elucidate this structure and its relation to molecular function at all length and time scales at both a single-cell level and a population level. Here, we present a multitechnique nanoscale chromatin imaging and analysis (nano-ChIA) platform that consolidates electron tomography of the primary chromatin fiber, optical super-resolution imaging of transcription processes, and label-free nano-sensing of chromatin packing and its dynamics in live cells. Using nano-ChIA, we observed that chromatin is localized into spatially separable packing domains, with an average diameter of around 200 nanometers, sub-megabase genomic size, and an internal fractal structure. The chromatin packing behavior of these domains exhibits a complex bidirectional relationship with active gene transcription. Furthermore, we found that properties of PDs are correlated among progenitor and progeny cells across cell division.

12.
Aging Clin Exp Res ; 32(10): 2141-2158, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32876941

RESUMO

OBJECTIVES: We present evidence for a possible role of Vitamin D (VitD) deficiency in unregulated cytokine production and inflammation leading to complications in COVID-19 patients. DESIGN: The time-adjusted case mortality ratio (T-CMR) was estimated as the ratio of deceased patients on day N to the confirmed cases on day N-8. The adaptive average of T-CMR (A-CMR) was calculated as a metric of COVID-19 associated mortality. A model based on positivity change (PC) and an estimated prevalence of COVID-19 was used to determine countries with similar screening strategies. A possible association of A-CMR with the mean concentration of 25-hydroxyvitamin D (25(OH)D) in elderly individuals in countries with similar screening strategy was investigated. We considered high C-reactive protein (CRP) in severe COVID-19 patients (CRP ≥ 1 mg/dL) as a surrogate of a cytokine storm. We considered high-sensitivity CRP (hs-CRP) in healthy subjects as hs-CRP ≥ 0.2 mg/dL. RESULTS: A link between 25(OH)D and A-CMR in countries with similar screening strategy is evidence for VitD's possible role in reducing unregulated cytokine production and inflammation among patients with severe COVID-19. We observed an odds ratio (OR) of 1.8 with 95% confidence interval (95% CI) (1.2 to 2.6) and an OR of 1.9 with 95% CI (1.4 to 2.7) for hs-CRP in VitD deficient elderly from low-income families and high-income families, respectively. COVID-19 patient-level data show an OR of 3.4 with 95% CI (2.15 to 5.4) for high CRP in severe COVID-19 patients. CONCLUSION: We conclude that future studies on VitD's role in reducing cytokine storm and COVID-19 mortality are warranted.


Assuntos
Infecções por Coronavirus/imunologia , Citocinas/imunologia , Inflamação/imunologia , Pneumonia Viral/imunologia , Vitamina D/imunologia , Idoso , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , Proteína C-Reativa/análise , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/mortalidade , SARS-CoV-2 , Vitamina D/uso terapêutico
13.
Sci Adv ; 6(2): eaay4055, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31950084

RESUMO

With the textbook view of chromatin folding based on the 30-nm fiber being challenged, it has been proposed that interphase DNA has an irregular 10-nm nucleosome polymer structure whose folding philosophy is unknown. Nevertheless, experimental advances suggest that this irregular packing is associated with many nontrivial physical properties that are puzzling from a polymer physics point of view. Here, we show that the reconciliation of these exotic properties necessitates modularizing three-dimensional genome into tree data structures on top of, and in striking contrast to, the linear topology of DNA double helix. These functional modules need to be connected and isolated by an open backbone that results in porous and heterogeneous packing in a quasi-self-similar manner, as revealed by our electron and optical imaging. Our multiscale theoretical and experimental results suggest the existence of higher-order universal folding principles for a disordered chromatin fiber to avoid entanglement and fulfill its biological functions.


Assuntos
Genoma , Imageamento Tridimensional , Células A549 , Algoritmos , Cromatina/química , Cromatina/ultraestrutura , Humanos , Modelos Genéticos , Conformação de Ácido Nucleico , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...